

Synthesis of the CD ring in taxol from (S)-(+)-carvone

Tony K. M. Shing,* Chi M. Lee and Ho Y. Lo

Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong, China Received 6 July 2001; accepted 21 September 2001

Abstract—The tricycle **16** containing a functionalized CD ring is constructed from (S)-(+)-carvone in 21 steps involving a Baeyer–Villiger oxidation, an Oppenaurer oxidation and Meerwein–Ponndorf–Verley reduction, a stereospecific Grignard addition, and an intramolecular S_N^2 reaction as the key steps. © 2001 Elsevier Science Ltd. All rights reserved.

Paclitaxel (Taxol)¹ (1) is a tetracyclic diterpenoid anticancer drug routinely used for the treatment of breast, lung, and ovarian carcinomas.² The outstanding cytotoxic activity of taxol is believed to arise from its unique propensity to hinder cell replication by preventing microtubules from depolymerization.³ To date, six total syntheses of taxol have been published.⁴ The shortest route was reported by Wender et al.,^{4d} starting from (1R)-(+)-verbenone and involving 37 steps in an overall yield of about 0.37%.

In our quest for the discovery of a structurally simplified, synthetically accessible taxol analogue which possesses a comparable biological profile, we started a project to investigate a facile and flexible construction of the CD rings of the taxol carbon skeleton. Our preliminary experiments have shown that the Diels–Alder reaction between (R)-(-)-carvone and isoprene occurred preponderantly in an *anti* orientation with respect to the isopropylene group in (R)-(-)-carvone to give the decalin 2.5 Such a decalin system 2, containing a stereo-defined angular methyl group, could be a valuable synthetic precursor for the taxol C ring system.

Keywords: taxoids; hydroxylation; Baeyer-Villiger reactions; Grignard reactions.

These experiments have also indicated that in order to obtain the correct absolute configuration at the angular methyl group in taxol, (S)-(+)-carvone has to be employed in our synthesis. Thus, the intermolecular Diels-Alder reaction of (S)-(+)-carvone with isoprene using EtAlCl₂ as the catalyst followed by protection⁶ of the carbonyl group with ethylene glycol gave acetal 3 in an overall yield of 82%. Dihydroxylation of the two double bonds in acetal 3 with a catalytic amount of osmium tetroxide and N-methylmorpholine-N-oxide (NMO)⁷ furnished the corresponding tetraol which was subjected to a selective glycol cleavage oxidation⁸ at the terminal diol unit, giving ketone 4, mp 171.5–172°C; $[\alpha]_D^{20}+3.0$ (c 0.3, CHCl₃), in a 74% overall yield. Baeyer– Villiger oxidation⁹ of ketone 4 using m-chloroperbenzoic acid (mCPBA) afforded acetate 5, mp 175.5–176°C; $[\alpha]_D^{20}$ –15.1 (c 0.37, CHCl₃), in 90% yield. Protection of the vicinal diol unit in 5 with 2,2dimethoxypropane (DMP) followed by deacetylation and pyridinium chlorochromate (PCC) oxidation of the resultant hydroxy group afforded ketone 6, mp 89.5-90.5°C; $[\alpha]_D^{20}+40.6$ (c 0.4, CHCl₃). After considerable experimentation, direct introduction of a 1-carbon unit to C-4 (taxol numbering) was unsuccessful and an alternative route was adopted. Thus, selective enolisation¹⁰ of ketone 6 with Et₃N occurred at C-4 and subsequent treatment with tert-butyldimethylsilyltriflate (TBSOTf) at -78°C gave the corresponding silvl enol ether which was oxidized with Oxone¹¹ to give the α -hydroxy ketone 7 in 65% overall yield. The inter-

^{*} Corresponding author. E-mail: tonyshing@cuhk.edu.hk

molecular redox reaction i.e. Oppenaurer oxidation and Meerwein–Ponndorf–Verley reduction, 12 of α -hydroxy ketone 7 using Al(O*i*Pr)₃ as the catalyst gave the thermodynamically more stable 5-hydroxy-4-one 8 in 79% yield. Transient protection of the free alcohol in 8 as a trimethylsilyl (TMS) ether was followed by the addition of vinyl magnesium bromide and subsequent deprotection with tetrabutylammonium fluoride (TBAF), affording the diol 9, mp 150–151°C; $[\alpha]_D^{20}+24.1$ (c 0.3, CHCl₃), in 86% overall yield. It is noteworthy that the Grignard addition was stereoselective and only one stereoisomer was isolated in a quantitative yield. The constitution and especially the stereochemistry of the tertiary alcohol in 9 was confirmed by X-ray crystallographic analysis. Benzylation of the diol 9 gave the

14 R = Ms

0 °C, 98%

dibenzyl ether **10** without incident, $[\alpha]_D^{20}+6.5$ (c 1.0, CHCl₃). The double bond in **10** was dihydroxylated⁷ and then oxidatively cleaved⁸ to form a rather stable aldehyde **11**, $[\alpha]_D^{20}+11.4$ (c 0.4, CHCl₃), in an overall yield of 76%. Selective hydrogenolysis of the secondary benzyl ether in **11** gave the hydroxy aldehyde **12** which was reduced with sodium borohydride to give diol **13**, $[\alpha]_D^{20}+10.6$ (c 0.5, CHCl₃). Selective mesylation¹⁴ of the less hindered primary alcohol in **13** gave the mesylate **14** that was treated with sodium hydride to cause an intramolecular S_N^2 reaction, in 82% overall yield. The benzyl ether protecting group in **15** was transformed into the desired acetyl group of **16**, mp 131–131.5°C; $[\alpha]_D^{20}+26.1$ (c 0.25, CHCl₃), by hydrogenolysis and

acetylation. Thus, the tricycle **16** was constructed from (S)-(+)-carvone in 21 steps with an overall yield of 4%.

In summary, we have presented a facile, efficient, and stereocontrolled synthetic route for the construction of the functionalized CD ring in taxol. The transformation of tricycles 15 and 16 into taxol analogues is under active investigation.

Acknowledgements

Financial support from CUHK Direct Grant (account no. 2060181) is gratefully acknowledged.

References

- 1. Taxol[®] is the registered trademark of Bristol–Myers Squibb Company for paclitaxel.
- 2. For a recent review on taxol, see: Kingston, D. G. I. *Chem. Commun.* **2001**, 867.
- Wani, M. C.; Taylor, H. L.; Wall, M. E.; Coggon, P.; McPhail, A. T. J. Am. Chem. Soc. 1971, 93, 2325.
- (a) Holten, R. A.; Kim, H.-B.; Somoza, C.; Liang, F.; Biediger, R. J.; Boatman, P. D.; Shindo, M.; Smith, C. C.; Kim, S.; Nadizadeh, H.; Suzuki, Y.; Tao, C.; Vu, P.; Tang, S.; Zhang, P.; Murthi, K. K.; Gentile, L. N.; Liu, J. H. J. Am. Chem. Soc. 1994, 116, 1599 and references cited therein; (b) Nicolaou, K. C.; Ueno, H.; Liu, J.-J.; Nantermet, P. G.; Yang, Z.; Renaud, J.; Paulvannan, K.; Chadha, R. J. Am. Chem. Soc. 1995, 117, 653 and references cited therein; (c) Danishefsky, S. J.; Masters, J. J.; Young, W. B.; Link, J. T.; Snyder, L. B.; Magee, T.

- V.; Jung, D. K.; Isaacs, R. C. A.; Bornmann, W. G.; Alaimo, C. A.; Coburn, C. A.; DiGrandi, M. J. J. Am. Chem. Soc. 1996, 118, 2843; (d) Wender, P. A.; Badham, N. F.; Comway, S. P.; Floreancig, P. E.; Glass, T. E.; Houze, J. B.; Krauss, N. E.; Lee, D.; Marquess, D. G.; McGrane, P. L.; Meng, W.; Natchus, M. G.; Shuker, A. J.; Sutton, J. C.; Taylor, R. E. J. Am. Chem. Soc. 1997, 119, 2757 and references cited therein; (e) Mukaiyama, T.; Shiina, I.; Iwadare, H.; Saitoh, M.; Nishimura, T.; Ohkawa, N.; Sakoh, H.; Nishimura, K.; Tani, Y.; Hasegawa, M.; Yamada, K.; Saitoh, K. Chem. Eur. J. 1999, 5, 121; (f) Kusama, H.; Hara, R.; Kawahara, S.; Nishimori, T.; Kashima, H.; Nakamura, N.; Morihara, K.; Kuwajima, I. J. Am. Chem. Soc. 2000, 122, 3811.
- Shing, T. K. M.; Lo, H. Y.; Mak, T. C. W. Tetrahedron 1999, 55, 4643.
- Babler, J. H.; Malek, N. C.; Coghlan, M. J. J. Org. Chem. 1978, 43, 1821.
- Jacobsen, E. N.; Markó, I.; Mungall, W. S.; Schröder, G.; Sharpless, K. B. J. Am. Chem. Soc. 1988, 110, 1968.
- 8. Shing, T. K. M. In *Comprehensive Organic Synthesis*; Trost, B. M.; Fleming, I., Eds.; Pergamon Press: Oxford, 1991; Vol. 7, p. 703.
- 9. Magnusson, G. Tetrahedron 1978, 34, 1385.
- VanderRoest, J. M.; Grieco, P. A. J. Org. Chem. 1996, 61, 5316.
- 11. Curci, R.; Fiorentino, M.; Troisi, L.; Edwards, J. O.; Pater, R. H. *J. Org. Chem.* **1980**, *45*, 4758.
- 12. DeGraauw, C. F.; Peters, J. A.; Bekkum, H.; Huskens, J. Synthesis 1994, 1007.
- Crystal structure data have been deposited at Cambridge Crystallographic Data Centre.
- 14. Donnell, C. J.; Burke, S. D. J. Org. Chem. 1998, 63, 8614.
- Nicolaou, K. C.; Liu, J.-J.; Hwang, C.-K.; Dai, W.-M.; Guy, R. K. J. Chem. Soc., Chem. Commun. 1992, 1118.